Model 954 4-Channel MFC Power Supply/Controller

INSTRUCTION MANUAL

Version IM- 954 Rev. A October 2005

Sierra Instruments, Inc., Headquarters 5 Harris Court, Building L

Monterey, California, USA 93940 Toll Free: 800-866-0200 (USA only) Phone: 831-373-0200 ; Fax: 831-373-4402 Website: <u>www.sierrainstruments.com</u>

Sierra Europe, European Headquarters Bijlmansweid 2 1934RE Egmond a/d Hoef The Netherlands Phone: +31 72 5071 400 ; Fax: +31 72 5071 401

Sierra Asia, Asia-Pacific Headquarters 100 Jaingnan Daidao Suite 2303 Guangzhou, China Phone: +86 20 3435 4870, Fax: +86 20 3435 4872

TABLE OF CONTENTS

PRODUCT DESCRIPTION	1
SPECIFICATIONS	2
FRONT PANEL	3
REAR PANEL	4
CONNECTOR PIN DESIGNATIONS	
Transducer Connector (J1, J2, J3, J4)	5
Analog Output (J5)	5
Alarms (J8)	6
RS232 (J6)	6
RS485 (J7, J9)	6
Model 954 Configuration	6B
STARTUP	- 7
MANUAL SETUP	
Selecting Display (Flow or Total)	9
Selecting Valve Override (Open, Close or Run)	9
Selecting Setpoint (Control Voltage)	10
Selecting Units of Measure and Gas Identifiers	10
Selecting Filter (-3dB A/D Converter Filter Frequency	11
Selecting Input (0-5Vdc, 0-10Vdc or 4-20mA Signal Input	11
Selecting Alarms (High and Low with Hysteresis)	12
Selecting Ratio (Master/Slave Operation)	13
MANUAL CAL/RANGE	
Calibrate (Zero Only)	14
Calibrate (Range Only)	14
Calibrate (Zero & Range)	15
Range (Changing Range)	15
Calibrate (Multiplier)	16
RS232/485 HOOKUP	17
RS232/485 COMMANDS	
Setting/Reading Setpoint & Flow Alarms	18
Setting/Reading Alarm Hysteresis, Units of Measure & Gas ID	19
Setting/Reading Signal Input & Filter	20
Setting/Reading Multiplier	21
Setting/Blanking/Reading Display	21
Resetting Total	22
Setting/Reading Range Value	22
Enable Master/Slave Channels & Setting Local/Remote Operation	22
UNITS OF MEASURE TABLE	23
GAS IDENTIFICATION TABLE	
Gas #1 thru 66	24
Gas #67 thru 130	25
Gas #131 thru 180	26
APPENDIX A, PCA SCHEMATIC DRAWING	

PRODUCT DESCRIPTION

The Model 954 is a high performance, microprocessor-based 4-channel power supply/controller designed for use with Mass Flow Controllers (MFC) or Mass Flow Meters (MFM).

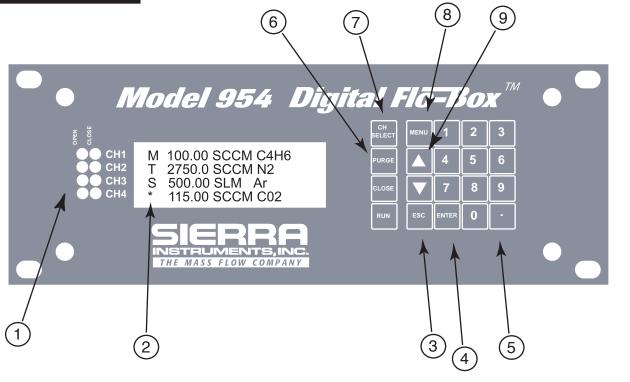
A linear regulator provides a low noise, foldback current limited, thermal overload protected +15Vdc and -15Vdc power supply for each of the (4) Channels. The Model 954 accepts user selectable 0-5Vdc, 0-10Vdc or 4-20mA input signals. It also supplies 0-5Vdc, 0-10Vdc or 4-20mA setpoint signals, for each channel, for flow control in MFC's.

The firmware utilizes a Real Time Operating Sytem (RTOS) for real time multitasking capabilities. This allows continuous monitoring of each channel's flow rates, total flow and setpoints regardless of the task being performed. A 16-bit multi-channel, high speed, sigma-delta analog-to-digital converter provides accurate flowrate data. A 32K x 8 battery backed RAM stores more than 90 Units of Measure and 190 Gas Identifiers selectable by the user. All pertinent data, required by the microprocessor at power-up to re-initialize the system, is also stored in the same RAM.

The Model 954 utilizes a 4-line by 20 character back lighted LCD display. A built in Totalizer, for each channel automatically recognizes the units of measure selected and adjusts the time base for the integrator accordingly. The user can select either Flow or Total to be displayed for each channel. When selected, the setpoint signal is displayed and can be altered via the front panel switches. Override controls for opening or closing the MFC valves are also available for each channel. Annunciator LED's display the selected valve override conditions.

Ratio control is user selectable for master/slave operation. Channel 1 is always the master and any of the other 3 channels may be selected as slaves. This master/slave arrangement utilizes the actual flow of Channel 1 as the master signal.

Both RS232 and RS485 serial communications are available. All functions selectable from the front panel switches are also accessible via the RS232/RS485 serial ports. Only one, either RS232 or RS485, serial port is active at any one time. Selection, including a baud rate of 9600 or 19.2K, is made via the front panel switches.


Each flow channel has a high and low user programmable alarm. The alarms activate an opto-isolated open collector transistor output capable of switching 25Vdc @ 10ma.

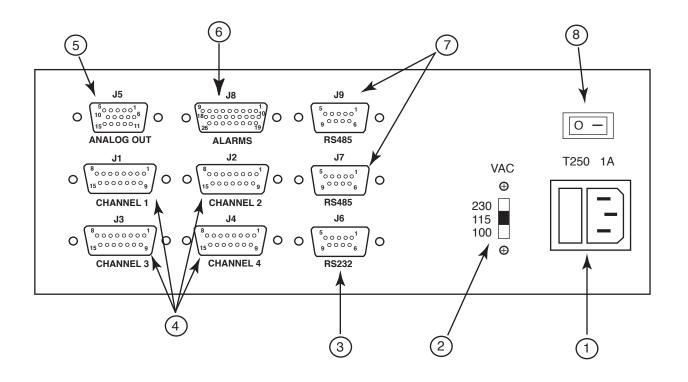
The unit can be rack mounted using standard half-rack hardware or can be bench mounted using the retractable stand provided. Input power is selectable, via the rear panel power selector for 100, 115 or 230 Vac, 50-60 Hz.

SPECIFICATIONS

Signal Input Number of Channels Signal Type Input Resistance Voltage Current	0-5Vdc, 0-10Vdc, 4-20mA , user selectable
Setpoint Output (Control Signal) Signal Type Accuracy (typ)	_ 0-5Vdc, 0-10Vdc, 4-20mA (user selectable) _ +/-0.05% FS (Voltage), +/-0.1% FS (Current)
Analog-to-Digital Converter Inputs Technique Resolution Speed (max)	_ 16-bit (bi-polar)
Totalizer (Each Channel) Technique Time Base (Quartz Crystal) Accuracy (typ)	20MHz
Microprocessor Type Speed Operating System Non-volatile memory	RTOS with multitasking capabilities
Serial Communications RS232 RS485 Baud Rate	Fuil-duplex (user-selectable)
Transducer Power Supply (Each Channel) Voltage Current (min) Current (max)	230MA
Input Power Voltage Current (typ) Fuse	100/115/230 Vac, +/-10% (switch selectable) 500 mA 1 amp SLO BLO (Time Delay) PAGE 2

FRONT PANEL

ANNUNCIATORS: Displays OVERRIDE signal status of each channel. If annunciators are not illuminated, the Setpoint (Control) voltage is active.


DISPLAY AREA

2

Column 1:	Reserved for displaying (*) Active Channel, (M) Master Channel, (S) Slave Channel or (T) totalizer.	
Column 2:	Reserved for polarity indicator (minus sign for negative signal, none for positive).	
Col's 3 - 8:	Actual scaled value of input signal. Displays FLOW or TOTAL in normal display mode. Displays the Setpoint (Control) value when CH SEL is depressed.	
Column 9:	Space	
Col's 10-14:	Units of Measure	
Column 15:	Space	
Col's 16-20:	Gas Identifier	
ESC: Escape key used to exit MENU sequence without updating current settings.		

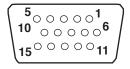
- ENTER: Key used to enter new settings.
- (3) (4) (5) KEYPAD: Used to quickly enter new settings.
- 6 OVERRIDE: Used with CH SEL to override Setpoint (Control) voltage inputs with valve OPEN or valve CLOSE signals. RUN disables OPEN or CLOSE selection.
- (7)CH SEL: Used to scroll through Channels 1, 2, 3 and 4 to update the selected Channel's Setpoint (Control) voltage or to send the selected OVERRIDE signal.
- (8) MENU: Key used to enter MENU or manual setup sequence.
- (9)SCROLL: Used to scroll MENU selections UP or DOWN

REAR PANEL

- 1 POWER INLET WITH FUSE (1 amp TIME DELAY or SLO BLO)
- ⁽²⁾ POWER SELECTOR SWITCH
- (3) RS232 SERIAL PORT (J6)
- TRANSDUCER CONNECTORS (J1, J2, J3, J4)
- (5) ANALOG OUTPUT (J5)
- (6) ALARMS (J8)
- (7) RS-485 SERIAL PORT (J7, J9)
- 8 POWER ON/OFF SWITCH

CONNECTOR PIN DESIGNATIONS

TRANSDUCER CONNECTORS (J1, J2, J3, J4)


- 1 SIGNAL COMMON
- 2 SIGNAL INPUT
- 3 GROUND
- 4 VALVE OPEN
- 5 GROUND
- 6 -15Vdc
- 7 NC
- 8 SETPOINT SIGNAL
- 9 GROUND
- 10 GROUND
- 11 NC
- 12 VALVE OFF
- 13 +15Vdc
- 14 NC
- 15 CHASSIS GROUND

ANALOG OUTPUT (J5)

- 1 SIGNAL CH 1
- 2 SIGNAL COMMON CH 1
- 3 SIGNAL CH2
- SIGNAL COMMON CH2 4
- 5 NC
- 6 NC
- 7 NC
- 8 NC
- 9 NC
- NC 10
- 11 SIGNAL CH3
- 12 SIGNAL COMMON CH3
- 13 SIGNAL CH4
- 14 SIGNAL COMMON CH4
- 15 NC

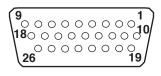
$$\begin{pmatrix} 8 & 1 \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \\ 15 & \circ \circ \circ \circ \circ \circ \circ \\ 9 \end{pmatrix}$$

Transducer Connector (Female) **Rear Panel View**

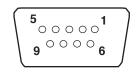
Analog Output Connector (Female) **Rear Panel View**

CONNECTOR PIN DESIGNATIONS

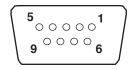
ALARMS (J8)


- 1 CH1 HIGH ALARM
- 2 CH 1 LOW ALARM
- 3 CH1 ALARM COMMON
- 4 CH2 HIGH ALARM
- 5 CH2 LOW ALARM
- 6 CH2 ALARM COMMON
- 7 NC
- 8 NC
- 9 NC
- 10 NC
- 11 NC
- 12 NC
- 13 NC
- 14 NC
- 15 NC
- 16 NC
- 17 NC
- 18 NC
- 19 CH3 HIGH ALARM
- 20 CH3 LOW ALARM
- 21 CH3 ALARM COMMON
- 22 CH4 HIGH ALARM
- 23 CH4 LOW ALARM
- 24 CH4 ALARM COMMON
- 25 NC
- 26 NC

RS232 (J6)


1	NC	6	DSR
2	RXD	7	NC
3	TXD	8	NC
4	DTR	9	NC
5	DIGITAL GROUND		

RS485 (J7, J9)


1	NC	6	NC
2	RXD(-)	7	RXD(+)
3	TXD(+)	8	TXD(-)
4	DIGITAL GROUND	9	NC
5	NC		

Alarm Connector (Female) Rear Panel View

RS232 Connector (Female) Rear Panel View

RS485 Connector (Female) Rear Panel View

MODEL 954 CONFIGURATION

As Sierra Instrument supplies mass flow instruments with two different valve circuits (15 Vdc and 30 Vdc), our Model 954 is designed to accommodate both types. This is accomplished by moving 4 jumpers (one per channel) on the Model 954 PCA (inside the housing). Please refer to the PCA schematic in Appendix A for the location of these jumpers. All Model 954 units come factory set for 15 Vdc valve circuit operation (unless ordered new with a 30 Vdc instrument).

Determining which valve circuit you have inside your Sierra flow instrument.

The following Sierra instruments have 15 Vdc valve circuits:

All Model 830 mass flow meters

All Model 840 mass flow controllers with plastic electronics cover

All Model 840 mass flow controllers with full-scale flow below 1.0 slpm

Model 840L mass flow controllers with metal electronics cover having a plug in the rear of the cover (upper right)

The following Sierra instruments have 30 Vdc valve circuits:

All Model 840M mass flow controllers

Model 840L Mass flow controllers with metal electronics cover having a screw in the rear of the cover (upper right)

The following Sierra instruments should never be used with the Model 954:

Any 840H mass flow controller. Contact Sierra Instruments for information on operating the Model 840H.

Jumper verification and adjustment

Select which one of the Model 954's four channels is to be used with each of your instruments. With the power disconnected, remove the top 2 large screws on the rear of Model 954. With the screws removed, carefully slide the top cover to the rear exposing the PCA inside (see Appendix A for PCA schematic). Locate the jumpers numbered 3 to 10. They are selected as follows:

Jumper position 3	Channel 1	30 Vdc valve
Jumper position 4	Channel 1	15 Vdc valve
Jumper position 5	Channel 2	30 Vdc valve
Jumper position 6	Channel 2	15 Vdc valve
Jumper position 7	Channel 3	30 Vdc valve
Jumper position 8	Channel 3	15 Vdc valve
Jumper position 9	Channel 4	30 Vdc valve
Jumper position 10	Channel 4	15 Vdc valve

Move the jumpers if needed, close the cover, replace the 2 screws.

START-UP

The Model 954 has a 100 Vac, 115 Vac or 230 Vac, 50/60 Hz power selector switch located at the rear of the instrument. Please refer to page 4 to locate this switch. Verify the power selector switch is in the proper position prior to connecting the power cable to the unit. Verify power ON/OFF switch is in the OFF position. Then perform the following steps.

- 1. Connect the power cable to the instrument and apply the proper input power. Do not make any other connections to the instrument.
- 2. Turn power ON/OFF switch ON.
- 3. The display will momentarily display the current version of the firmware utilized, If you purchase the model 954 separately, it will show the following factory default display:

126.72 SCCM #1 126.72 SCCM #2 126.71 SCCM C3H6O 126.72 SCCM C2H3N

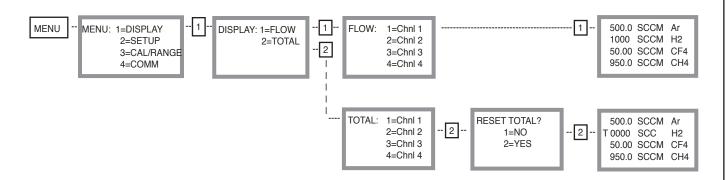
If your model 954 was purchased with Sierra MFM or MFC instruments, each channel will be set to the proper calibration for that unit.

- Note: All 4 channels should have the CLOSE annunciators illuminated. The values 126.71 and 126.72 are approximate and is the display for an open signal input. It may not correspond exactly to the display shown on this unit.
- 4. Change the Units of Measure and Gas Identifiers as desired. Please refer to page 10. To blank the Units of Measure select "00" then "ENT". To blank the Gas Identifier select "000" then "ENT". To blank the entire line, please refer to RS232/485 Commands, Selecting/Blanking/Reading Display on page 21.
- The Model 954 is factory calibrated at 0.000 and 5.000Vdc to display 0.00 and 100.00 for each channel. To change the display range, without recalibration, see MANUAL CAL/RANGE, Range(Changing Range) on page 15. To enter a Gas Correction Factor or Multiplier, refer to MANUAL CAL/RANGE, Calibrate (Multiplier) on page 16. The factory Multiplier setting is 1.0000.
- 6. The Model 954 can accept 0-5Vdc, 0-10Vdc or 4-20mA input signals. If either 0-10Vdc or 4-20mA is required, the instrument needs to be recalibrated. Select the proper signal input for the Transducer to be used for each channel. Please refer to MANUAL SETUP, Selecting Input on page 11. Do not attempt to recalibrate the instrument at this time. The factory Input setting is 0-5Vdc.
- 7. Select Filter to optimize reading stability and conversion speed. The factory Filter setting is 15Hz.
- 8. Allow 30 minutes warm-up time.
- 9. Turn power ON/OFF switch OFF.
- 10. Connect MFC/MFM #1 to J1 on the Model 954 using the Connector Pin Designation information on page 5. Connect all ground connections available to the transducer. Example: If the MFC/MFM has 4 ground pins, connect all four ground pins shown on J1. All ground pins on J1, J2, J3 and J4 are common but are routed on separate wires from the connector to a ground plane on the instrument motherboard.
- 11. Connect MFC/MFM #2, 3 and 4 to the instrument. The Power Supply inside The 954 is designed to provide +/-15Vdc @ 250-400 mA to each transducer. Do not use a Transducer that requires more than +/-15Vdc @ 500mA on any channel.
- 12. Verify the display illuminates and the transducer readings are essentially correct. If the selected signal input for a channel is 0-5Vdc proceed to Step 13 for that channel. If the selected signal input for a channel is 0-10Vdc or 4-20mA, that channel needs to be recalibrated. Refer to MANUAL CAL/RANGE, Calibrate section pages 14 and 15 to recalibrate that channel.

START-UP

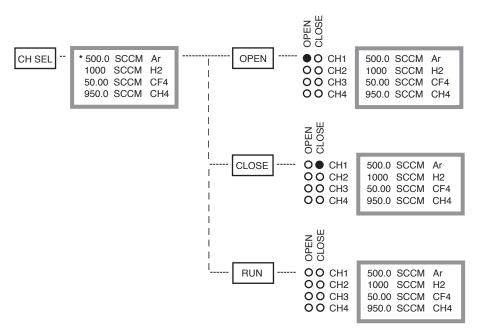
13. To utilize the Setpoint (Control) voltage for MFC's, set the Setpoint voltage for each channel to the desired setting. Please refer to MANUAL SETUP, Selecting Setpoint (Control Voltage) on page 10. The factory Setpoint default is 0.0000 for all 4 channels.

The Setpoint voltage, for a 0-5Vdc signal input, is calculated as follows.

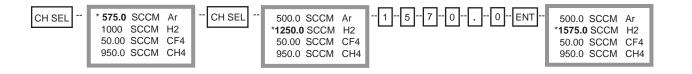

Setpoint Voltage = (Setpoint Value/Range Value) * 5.000Vdc Example: If the Setpoint Value = 120.00 SCCM and the Range Value is 250.00 SCCM, the Setpoint Voltage = (120.00/250.00)*5.000 = 2.400Vdc.

> For a 0-10Vdc signal input the Setpoint Voltage= (120.00/250.00)*10.000Vdc = 4.800Vdc

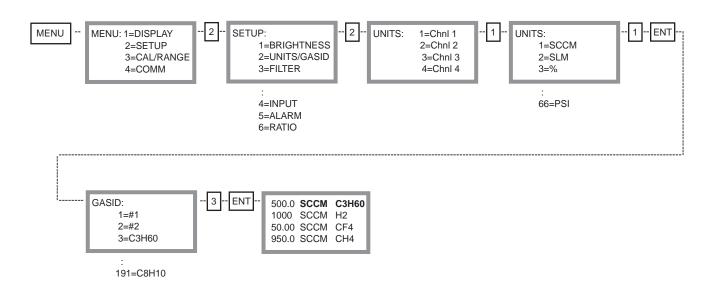
For a 4-20mA signal input the Setpoint Current = (120.00/250.00)*16mA + 4mA = 11.68mA.


- 14. The Flowrate Alarms are used to monitor the flowrate of the MFC. If the flow rate is not within the selected HIGH and LOW Alarm values, an opto-isolated open collector output is activated. This output can be used to illuminate warning lights to alert the user if the Flow Controller's Setpoint (Control) voltage is not controlling the flow within a desired window. Refer to MANUAL SETUP, Selecting Alarms on page 12. The factory default is HIGH Alarm set at 75.000, LOW Alarm at 25.000 and HYSTERESIS at 010 counts.
- 15. To activate the Setpoint (Control) voltage to the MFC, select RUN for the desired channel. Reference MANUAL SETUP, Selecting Valve Override (Open, Close or Run) on page 9. The default at power-up is Valve Close.
- 16. If the Units of Measure are in flow units, The Model 954 automatically calculates TOTAL flow using a Riemann Sum Integration method. To display TOTAL or to reset the TOTAL display, refer to MANUAL/SETUP, Selecting Display (Flow or Total) on page 9. If the Units of Measure are not in flow units, the TOTAL is not calculated or displayed.
- 17. The Model 954 has both RS232 and RS485 serial communications ports. Only one port is active at any one time and is user selectable. The RS232 port has (1) 9-pin D-sub connector, while the RS485 port has (2) 9-pin D-sub connectors. All Setups described earlier can be performed using the serial communications ports. Reference RS232/485 Hookup and Commands on pages 17 through 26.

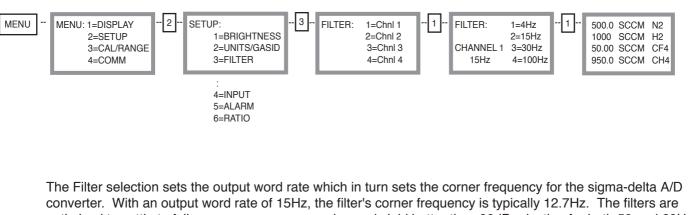
Selecting Display (Flow or Total)


If Flow is selected, the most significant digit location will be left blank. If Total is selected, a "T" appears in this location and the Unit of Measure changes accordingly. If the Unit of Measure selected is not a flow rate unit of measure, Total will not be displayed.

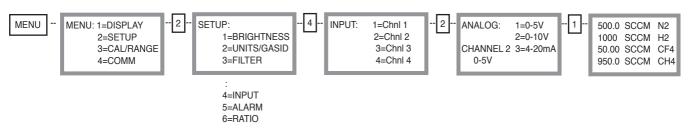
Selecting Valve Overide (Open, Close or Run)


Channel 1 is shown selected above. An asterisk appears to signify the Channel selected. To select Channel 2, depress **CH SEL** switch twice, then select **OPEN**, **CLOSE** or **RUN**. If **OPEN** is selected, ground is applied to the appropriate channel connector pin-4. This ground is at the same potential as pin-9. If **CLOSE** is selected, ground is applied to pin-12. Both pin-4 and pin-12 are grounded with an open collector transistor capable of sinking 250mA at 25V. If **RUN** is selected, no override signals are sent and the MFC Setpoint control is activated. If the valve override does not appear to function correctly, you may need to re-configure The Model 954 using the 15/30 VDC jumpers on the PCA. Refer to page 6B to verify valve circuit configuration of The 954 is correct for your MFM or MFC.

Selecting Setpoint (Control Voltage)


The example above shows how the setpoint for Channel 2 is changed. When **CH SEL** is depressed an asterisk points to the channel selected. To select Channel 4, depress **CH SEL** switch 4 times. The value displayed after the asterisk is the current setpoint value. Typing in a new value overrides the old value. If **ESC** is depressed instead of **ENT**, the old value is retained.

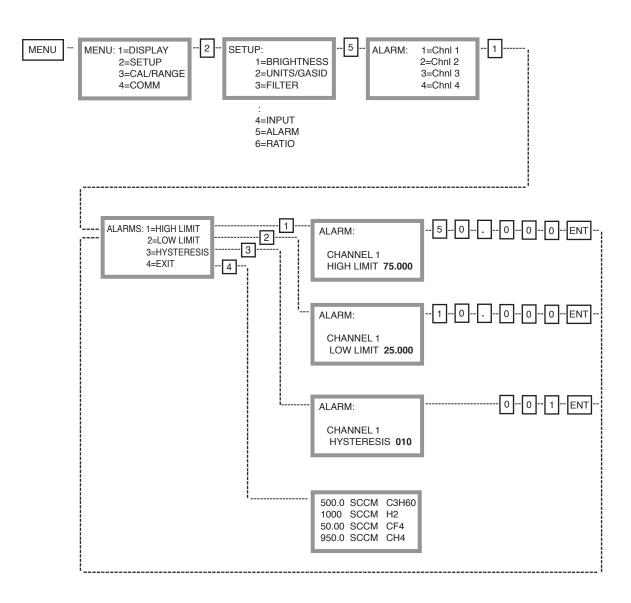
Selecting Units of Measure and Gas Identifiers


The bold characters shown in the above flow chart indicate the updated Units of Measure and Gas Identifier selected. Note: When the Units of Measure and Gas Identifiers are selected, ENT must be depressed before the selection is made. This is because it may require the inputting of more than 1 digit to make the desired selection.

Selecting Filter (-3db A/D Converter Filter Frequency)

optimized to settle to full accuracy every conversion and yield better than 80dB rejection for both 50 and 60Hz with output word rates at or below 15Hz. The last filter output word rate setting for the selected channel is displayed for user convenience. Each channel may be set to a different filter output word rate. The factory default is15Hz for each channel to optimize response time and noise rejection.

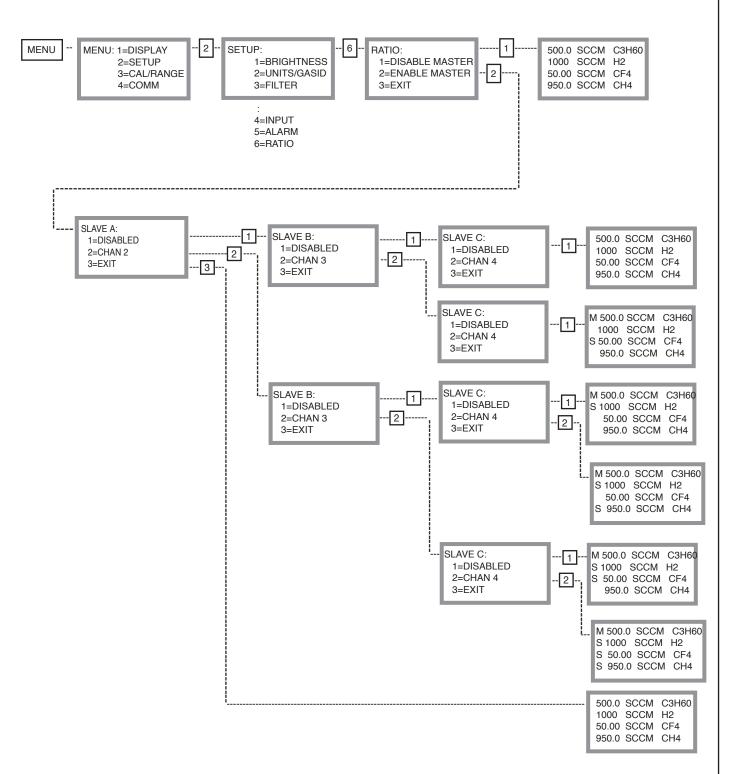
Selecting Input (0-5Vdc, 0-10Vdc or 4-20mA Signal Input)



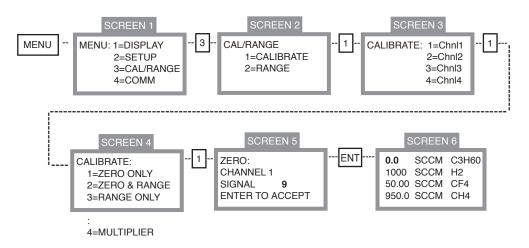
The Input selection sets the full scale input signal and the full scale setpoint (control) signal for the selected channel. The selected channel and the input signal setting that was previously selected is displayed during selection. The factory default is 0-5V for each channel. Any input may be selected for any channel. The instrument compensates for any incompatibilities even in the Master/Slave configuration.

Example: If the full scale input selected is 0-10V, then the full scale setpoint output is also 0-10V. If the Master Channel is 0-10V and the Slave Channel is 4-20mA, the instrument compensates for the incompatibility and sends a 0-10V setpoint signal for the Master and a 4-20mA setpoint signal proportional to the 0-10V input signal for the Slave.

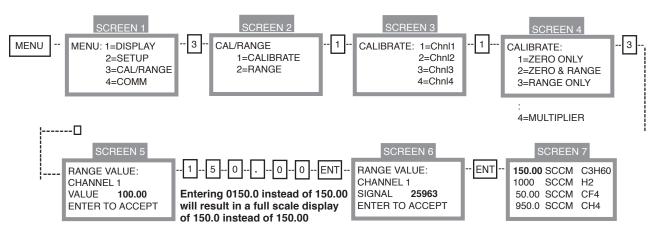
Note: For most MFC's the full scale input is 0-5V.


Selecting Alarms (High and Low with Hysteresis)

Each channel has a HIGH and LOW alarm to monitor the flow rate signal. If the flow rate is higher than the HIGH alarm or less than the LOW alarm, an optically isolated open collector output is turned on. This alarm may be used as a warning that the flow rate is not within the limits set by the setpoint (control) signal. A programmable HYSTERESIS of 1 to 999 counts provide a deadband for the alarms. To exit the alarm setup a "4" to exit must be selected.

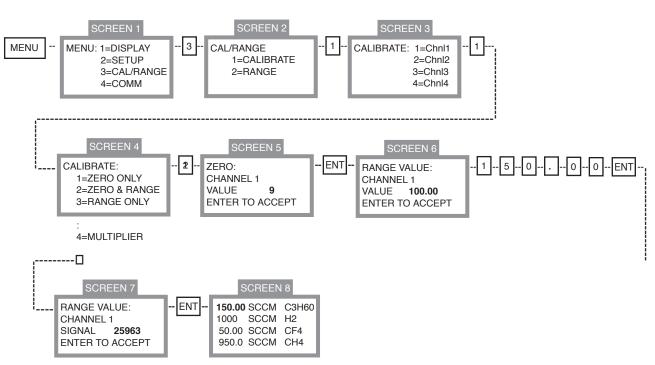

In the above example, the HIGH alarm limit was changed from 75.000 to 50.000, the LOW alarm limit from 25.000 to 10.000 and HYSTERESIS from 010 to 001. The factory default is 75.000, 25.000 and 010 for the HIGH, LOW and HYSTERESIS settings, respectively.

Selecting Ratio (Master/Slave Operation)

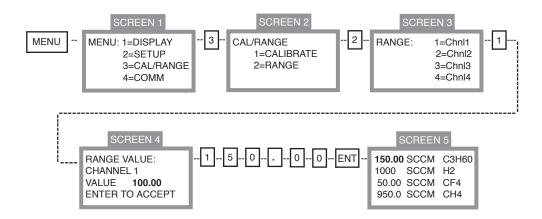

MANUAL CAL/RANGE

Calibrate (Zero only)

The "Zero only" sequence shown above is used to zero the MFC. Verify the input signal is at or close to zero prior to performing this sequence. In **SCREEN 5**, the data shown after "SIGNAL" is the raw analog-to-digital data corresponding to the input signal applied. This data is live and will change as the input signal is changed. It should be close to zero, unless the MFC is being zeroed at a point other than zero. If **ENT** is depressed during **SCREEN 5**, the value present at the input will be zeroed on the display, as shown in **SCREEN 6**. If **ESC** is entered, the previous zeroed value applies.


Calibrate (Range only)

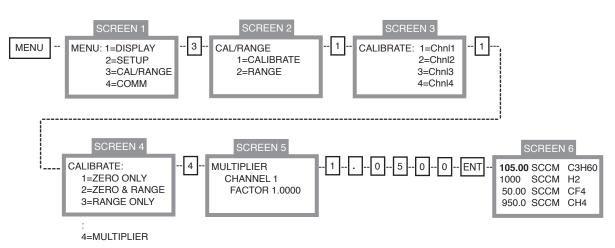
The Range only sequence is used to calibrate the full scale reading of the MFC. Apply a full scale input signal, typically 5Vdc to the signal input prior to performing this sequence. At **SCREEN 5**, the user has 2 alternatives. The first is to accept the display **RANGE** value shown by depressing **ENT**. The second is to enter a new **RANGE** value, as shown above, prior to completing the RANGE sequence. The Signal displayed on **SCREEN 6** is the live, un-scaled analog-to-digital converter data, and will change as the input changes. The value present when **ENT** is depressed will be used in the full scale calibration calculations. If **ESC** is entered instead of **ENT**, the previous calibration applies. NOTE: DO NOT USE THE RANGE ONLY SEQUENCE TO CHANGE RANGES. USE SELECTION 2 SHOWN IN SCREEN 2.


MANUAL CAL/RANGE

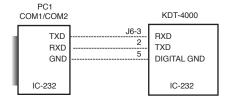
Calibrate (Zero & Range)

The Zero & Range calibration allows both zero and full scale calibrations to be performed in the same sequence. The input signal needs to be changed from a zero to a full scale value during the calibration sequence. The same rules apply as previously mentioned in the Zero only and Range only procedures.

Range (Changing Range)



The Range sequence is **not** a calibration sequence. Changing the Range value simply replaces the Range value used during the previous full scale calibration. The analog-to-digital converter data used during the previous full scale calibration is still valid. Ranging is a simple way to change ranges when changing MFC's. It assumes the full scale output voltage of the new MFC is the same as the previous MFC.


MANUAL CAL/RANGE

Calibrate (Multiplier)

Entering a MULTIPLIER value changes the display by that multiplier factor. All data values are multiplied by the MULTIPLIER prior to display. The MULTIPLIER is sometimes referred to as a GAS CORRECTION factor when used with MFC's. If the MFC is calibrated with nitrogen and another gas is used with the MFC, a GAS CORRECTION factor can be entered to recalibrate the MFC to the gas used.

BI-DIRECTIONAL RS-232 CONNECTION

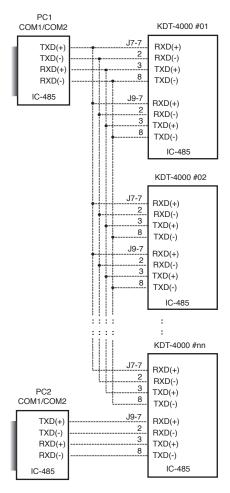
RS232/485 data is transmitted at 9600 or 19.2K baud (user-selectable) in the following format:

One Start Bit Eight Data Bits in ASCII Format No Parity Bit One Stop Bit

Note: All commands and queries are case sensitive and require an upper case character.

Reading Display

RS232 Query:


- C5 Response: "CH1>sddd.dd>eeeee>xxxxx>z CH2>sddd.dd>eeeee>xxxxx>z CH3>sddd.dd>eeeee>xxxxx>z CH3>sddd.dd>eeeee>xxxxx>z"

RS485 Query:

- *aaC1 Response: "CH1 >> sddd.dd >> eeeee >> xxxxx >> z
- *aaC5 Response: "CH1>sddd.dd>eeeeeo>xxxxx>z CH2>sddd.dd>eeeeeo>xxxxx>z CH3>sddd.dd>eeeeo>xxxxx>z CH3>sddd.dd>eeeeo>xxxxx>z CH4>sddd.dd>eeeeo>xxxxx>z"

where: aa= KDT-4000 address Reference: Checking/Changing RS485 Address on pg 19.

MULTIDROP/4-WIRE FULL DUPLEX RS-485 CONNECTION

Note: nn=32 maximum (drivers and receivers)

RS485 Query: *00X Response Note: All Model	954 RS485 Address Setting se: "MULTIDROP ADDRESS: 01" 954's will respond to * 0 0 X. To prevent bus , connect only 1 Model 954 to the RS485 s check.	RS485 (*00x <aa< td=""><td>g Model 954 RS48 Command: a> Set 95 Send * 0 0 x Model 954 wi to acknowled</td></aa<>	g Model 954 RS48 Command: a> Set 95 Send * 0 0 x Model 954 wi to acknowled
			change its Ac
Setting Setpoint	Control) Voltage	Reading	Setpoint (Contro
RS232 Commar	nd:	RS232 (Query:
SP1 <dd.ddd></dd.ddd>	Set CH1 Setpoint to dd.ddd	SP1	Response: "SP10
SP2 <dd.ddd></dd.ddd>	Set CH2 Setpoint to dd.ddd	SP2	Response: "SP2d
SP3 <dd.ddd></dd.ddd>	Set CH3 Setpoint to dd.ddd	SP3	Response: "SP30
SP4 <dd.ddd></dd.ddd>	Set CH4 Setpoint to dd.ddd	SP4	Response: "SP4
CH1 S 100.0			
	contain 5 digits and 1 decimal point. is a valid entry. Setpoint is always positive.		
RS485 Commar	nd:	RS485 (
*aaSP1 <dd.ddd></dd.ddd>	Set CH1 Setpoint at Address 01 to dd.ddd	*aaSP1	Response: "SP1
*aaSP2 <dd.ddd></dd.ddd>	Set CH2 Setpoint at Address 01 to dd.ddd	*aaSP2	Response: "SP20
*aaSP3 <dd.ddd></dd.ddd>	Set CH3 Setpoint at Address 01 to dd.ddd	*aaSP3	Response: "SP3
*aaSP4 <dd.ddd></dd.ddd>	Set CH4 Setpoint at Address 01 to dd.ddd	*aaSP4	Response: "SP4
Example: Send	*01SP22500.0	uuor r	
	954 with Address 01 will have CH2 Setpoint of) Voltage set to 2500.0		
Setting Alarms		Reading	Alarms
RS232 Commar	nd:	RS232 (Query:
A1H <dd.ddd></dd.ddd>	Set CH1 High Alarm to dd.ddd	A1H	Response: A1H
A2L <dd.ddd></dd.ddd>	Set CH1 Low Alarm to dd.ddd	A1L	Response: A1L c
A2H <dd.ddd></dd.ddd>	Set CH2 High Alarm to dd.ddd	A2H	Response: A2H
A2L <dd.ddd></dd.ddd>	Set CH2 Low Alarm to dd.ddd	A2L	Response: A2L c
A3H <dd.ddd></dd.ddd>	Set CH3 High Alarm to dd.ddd	A3H	Response: A3H
A3L <dd.ddd></dd.ddd>	Set CH3 Low Alarm to dd.ddd	A3L	Response: A3L d
A4H <dd.ddd></dd.ddd>	Set CH4 High Alarm to dd.ddd	A4H	Response: A4H o
A4L <dd.ddd></dd.ddd>	Set CH4 Low Alarm to dd.ddd	A4L	Response: A4IL o
•	A 4 L 3 5 . 0 0 0	D0 (05 (2
CH4 L	ow Alarm Setpoint will be 35.000	RS485 (,
RS485 Commar	nd:	*aaA1H	
*aaA1H <dd.ddd></dd.ddd>	 Set CH1 High Alarm at Address 02 to dd.ddd 	*aaA1L	
*aaA1L <dd.ddd></dd.ddd>	Set CH1 Low Alarm at Address 02 to dd.ddd	*aaA2H	
*aaA2H <dd.ddd></dd.ddd>	Set CH2 High Alarm at Address 02 to dd.ddd	*aaA2L	·
	Set CH2 Low Alarm at Address 02 to dd.ddd	*aaA3H	·
	 Set CH3 High Alarm at Address 02 to dd.ddd 	*aaA3L	·
	Set CH3 Low Alarm at Address 02 to dd.ddd	*aaA4H	·
Example: Send		*aaA4L	Response: A4L
	954 with Address 02 will have CH3 High		
Aldiffis	set to 500.00		

485 Address Setting

54 Address to aa

x 2 2 vill respond with a "spade" character dge receipt of this command and Address to "22"

rol) Voltage

SP1	Response: "SP1ddd.dd"
SP2	Response: "SP2ddd.dd"
SP3	Response: "SP3ddd.dd"

4ddd.dd"

*aaSP1	Response: "SP1ddd.dd"
*aaSP2	Response: "SP2ddd.dd"
*aaSP3	Response: "SP3ddd.dd"
*aaSP4	Response: "SP4ddd.dd"

A1H	Response: A1H ddd.dd
A1L	Response: A1L ddd.dd
A2H	Response: A2H ddd.dd
A2L	Response: A2L ddd.dd
АЗН	Response: A3H ddd.dd
A3L	Response: A3L ddd.dd
A4H	Response: A4H ddd.dd
A4L	Response: A4IL ddd.dd

*aaA1H	Response: A1H ddd.dd
*aaA1L	Response: A1H ddd.dd
*aaA2H	Response: A2H ddd.dd
*aaA2L	Response: A2L ddd.dd
*aaA3H	Response: A3H ddd.dd
*aaA3L	Response: A3L ddd.dd
*aaA4H	Response: A4H ddd.dd
*aaA4L	Response: A4L ddd.dd

Setting Alarm Hy	steresis	Reading Alarm Hysteresis	
RS232 Command:		RS232 Query:	
HY1 <ddd></ddd>	Set CH1 Alarm Hysteresis to ddd	HY1 Response: HY1ddd	
HY2 <ddd></ddd>	Set CH2 Alarm Hysteresis to ddd	HY2 Response: HY2ddd	
HY3 <ddd></ddd>	Set CH3 Alarm Hysteresis to ddd Set CH4 Alarm Hysteresis to ddd	HY3 Response: HY3ddd	
HY4 <ddd></ddd>	where 000 <ddd<250< td=""><td>HY4 Response: HY4ddd</td></ddd<250<>	HY4 Response: HY4ddd	
Example: Send		Example: Send IN3 Response: IN3	
	Alarm Hysteresis set to 10 counts.		
RS485 Comma	-	RS485 Query:	
*aaHY1 <ddd></ddd>	Set CH1 Hysteresis at Address aa to ddd	*aaHY1 Response: HY1ddd	
*aaHY2 <ddd></ddd>	Set CH2 Hysteresis at Address aa to ddd	*aaHY2 Response: HY2ddd	
*aaHY3 <ddd></ddd>	Set CH3 Hysteresis at Address aa to ddd	*aaHY3 Response: HY3ddd	
*aaHY4 <ddd></ddd>	Set CH4 Hysteresis at Address aa to ddd	*aaHY4 Response: HY4ddd	
Example: Send	* 0 1 HY3100		
	I 954 with Address 01 will have CH3 Alarm resis set to 100		
Setting Units of M	N easure	Reading Units of Measure	
RS232 Commai	nd:	RS232 Query:	
UM1 <dd></dd>	Set CH1 Unit of Measure to selection dd	UM1 Response: UM1dd	
UM2 <dd></dd>	Set CH2 Unit of Measure to selection dd	UM2 Response: UM2dd	
UM3 <dd></dd>	Set CH3 Unit of Measure to selection dd	UM3 Response: UM3dd	
UM4 <dd></dd>	Set CH4 Unit of Measure to selection dd	UM4 Response: UM4dd	
Reference Units	of Measure Table on pg 14 for selection	Example: Send UM1	
Example: Send	UM101	Response: UM11 if CH1 Unit of Measure was	
•	Jnit of Measure will be SCCM	SCCM	
RS485 Comma	nd.	RS485 Query:	
*aaUM1 <dd></dd>	Set CH1 Unit of Measure at Address 02 to	*aaUM1 Response: UM1dd	
	selection dd	*aaUM2 Response: UM2dd	
*aaUM2 <dd></dd>	Set CH1 Unit of Measure at Address 02 to	*aaUM3 Response: UM3dd	
*aaUM3 <dd></dd>	selection dd Set CH3 Unit of Measure at Address 02 to	*aaUM4 Response: UM4dd	
aa01010<002	selection dd		
*aaUM4 <dd></dd>	Set CH2 Unit of Measure at Address 02 to		
	selection dd		
Example: Send	*03UM366		
Model	954 with Address 02 will have CH3 Unit of		
Measu	re set to PSI		
Setting Gas Iden	îfier	Deadian Carldon tifen	
RS232 Comma	nd:	Reading Gas Identifier	
GS1 <ddd></ddd>	Set CH1 Gas Identifier to selection dd	RS232 Query:	
GS2 <ddd></ddd>	Set CH2 Gas Identifier to selection dd	GS1 Response: GS1ddd	
GS3 <ddd></ddd>	Set CH3 Gas Identifier to selection dd	GS2 Response: GS2ddd	
GS4 <ddd></ddd>	Set CH4 Gas Identifier to selection dd	GS3 Response: GS3ddd	
Reference Gas selection	Identifier Table on pgs 15, 16 and 17 for	GS4 Response: GS4ddd Example: Send GS3	
Example: Send	GS1050	Response: GS3050 if CH1 Gas Identifier was	
CH1 Gas Identifier will be C2H6O		C2H60	
0.11			

Setting Signal Input

RS232 Command:

IN1 <d></d>	Set CH1 Signal Input to selection d
IN2 <d></d>	Set CH2 Signal Input to selection d
IN3 <d></d>	Set CH3 Signal Input to selection d
IN4 <d></d>	Set CH4 Signal Input to selection d
	where d=1 Signal Input = 0-5V
	d=2 Signal Input = 0-10V
	d=3 Signal Input = 4-20mA

Example: Send IN33

CH3 Signal Input selection is 4-20mA. This also sets CH3 Setpoint (Control) signal to 4-20mA.

RS485 Command:

*aalN1 <d></d>	Set CH1 Signal Input at Address aa to selection d
*aalN2 <d></d>	Set CH2 Signal Input at Address aa to selection d

*aalN3<ddd> Set CH3 Signal Input at Address aa to selection d

*aalN4<ddd> Set CH4 Signal Input at Address aa to selection d Example: Send *01IN31

Model 954 with Address 01 will have CH3 Signal Input set for 0-5V.

Setting Filter

RS232 Command:

FL1 <d></d>		Set CH1 F	ilter selec	tion to d
FL2 <d></d>		Set CH2 F	ilter selec	tion to d
FL3 <d></d>		Set CH3 F	ilter selec	tion to d
FL4 <d></d>		Set CH4 Filter selection to d		
		Where d= ⁻ d=2 d=3 d=4		Filter = 4Hz Filter = 15Hz Filter = 30Hz Filter =100Hz
Evampla	Sond	FI 12		

Example: Send FL12

CH1 Filter f(-3dB) will be 15Hz

RS485 Command:

*aaFL1 <d></d>	Set CH1 Filter at Address aa to selection d
*aaFL2 <d></d>	Set CH1 Filter at Address aa to selection d
*aaFL3 <d></d>	Set CH3 Filter at Address aa to selection d

*aaFL4<d> Set CH2 Filter at Address aa to selection d

Example: Send *03FL13

Model 954 with Address 03 will have CH1 Filter selection set for 30Hz.

	5 1				
RS232 (Query:				
IN1	Response	e: IN1∽d	<>zzzzz		
IN2	Response	e: IN2~d	<>zzzzz		
IN3	Response	e: IN3<>d	<>zzzzz		
IN4	Response	e: IN4~d	<>zzzz		
	Where	zzzzz = 0	-5V for d=1 -10V for d=2 -20mA for d=3	3	
Example	e: Send IN	13	Response:	IN3	3

Reading Signal Input Selection

RS485 Query:

*aalN1	Response: IN1~d~zzzzz	
*aalN2	Response: IN2<>d<>zzzz	
*aaIN3	Response: IN3<>d<>zzzz	
*aalN4	Response: IN4<>d<>zzzz	
Example	: Send *10IN2 Response: IN2 1 0-	5V

Reading Filter

RS232 Query:

FL1	Response:	FL1 cd zzzzz

- FL2 Response: FL2 Sd>zzzzz
- FL3 Response: FL3 d>zzzzz
- FL4 Response: FL4 d>zzzzz
 - Where zzzzz = 4Hz for d=1 zzzzz = 15Hz for d=2 zzzzz = 30Hz for d=3 zzzzz = 100Hz for d=4
- Example: Send FL1

Response: FL1 2 15Hz if CH1 Filter selection was 2.

RS485 Query:

- *aaFL1 Response: FL<>1<>zzzz
- *aaFL2 Response: FL-2-zzzz
- *aaFL3 Response: FL 3 > zzzzz
- *aaFL4 Response: FL4-2zzzz

4-20mA

Setting Multipli RS232 Comma ML1 <d.dddd> ML2<d.dddd> ML3<d.dddd> ML4<d.dddd> Example: Sen CH3</d.dddd></d.dddd></d.dddd></d.dddd>	and: Set CH1 Multiplier to d.dddd Set CH2 Multiplier to d.dddd Set CH3 Multiplier to d.dddd Set CH4 Multiplier to d.dddd	RS232 ML1 ML2 ML3 ML4	Multiplier Query: Response: ML1< Response: ML2< Response: ML3< Response: ML4< le: Send ML3	>>>d.dddd >>>d.dddd
*aaML2 <d.ddd *aaIN3<d.dddd *aaIN4<d.dddd Example: Seno Mod</d.dddd </d.dddd </d.ddd 	and: d> Set CH1 Multiplier at Address aa to d.dddd d> Set CH2 Multiplier at Address aa to d.dddd > Set CH3 Multiplier at Address aa to d.dddd > Set CH4 Multiplier at Address aa to d.dddd d *05ML31.0000 lel 954 with Address 05 will have CH3 iplier set to 1.0000.	RS485 *aaML1 *aaML2 *aaML3 *aaML4	Response: ML1< Response: ML2< Response: ML3<	>>>d.dddd
Setting/Blankin	g Display (Flow or Total)	Reading	Display (Selection))
RS232 Comm		-	Query:	7
D1 <d></d>	Set CH1 Display to selection d	D1	Response: D1d	
D2 <d></d>	Set CH2 Display to selection d	D2	Response: D2d	
D3 <d></d>	Set CH3 Display to selection d	D3	Response: D3d	
D4 <d></d>	Set CH4 Display to selection d	D4	Response: D4d	
	Where d=1 sets Display for TOTAL d=2 sets Display for FLOW d=3 blanks Display for selected Channel			
	Display shows TOTAL	Examp	le: Send D1 Response: D12	2 indicates d=2 for FLOW on CH1
RS485 Comma			1.00001100. D12	
*aaD1d *aaD2d	Set CH1 Display at Address aa to selection d Set CH2 Display at Address aa to selection d	RS485	Query:	

*aaD1 Response: D1d

*aaD2 Response: D2d

*aaD3 Response: D3d

*aaD4 Response: D4d

*aaD1d	Set CH1 Display at Address aa to selection d
*aaD2d	Set CH2 Display at Address aa to selection d
*aaD3d	Set CH3 Display at Address aa to selection d

d Set CH4 Display at Address aa to selection d *aaD4d

Example: Send *03D12

Model 954 with Address 03 will display FLOW on CH1

Resetting Total

RS232 Command:

RS232 Command:				
T1R	Reset CH1 Total to zero			
T2R	Reset CH2 Total to zero			
T3R	Reset CH3 Total to zero			
T4R	Reset CH4 Total to zero			
Exampl	e: Send T3R CH3 Total reset to zero			
BS485	Command:			
*aaT1F				
*aaT2F				
*aalT3l				
*aalT4				
Exampl	e: Send *01T1R Model 954 with Address 01 CH1 Total reset to zero			
Setting	Range Value			
RS232	Command:			
SN1 <d< td=""><td>.dddd> Set CH1 Range value to d.dddd</td></d<>	.dddd> Set CH1 Range value to d.dddd			
SN2 <d< td=""><td>.dddd> Set CH2 Range value to d.dddd</td></d<>	.dddd> Set CH2 Range value to d.dddd			
SN3 <d< td=""><td>.dddd> Set CH3 Range value to d.dddd</td></d<>	.dddd> Set CH3 Range value to d.dddd			
SN4 <d< td=""><td>.dddd> Set CH4 Range value to d.dddd</td></d<>	.dddd> Set CH4 Range value to d.dddd			
	-			
Example: Send SN1150.00 CH1 Range value set to 150.00				
RS485	Command:			
*aaSN1	I <d.dddd> Set CH1 Range value at Address aa to d.dddd</d.dddd>			
*aaSN2	2 <d.dddd> Set CH2 Range value at Address aa to d.dddd</d.dddd>			
*aaSN3 <d.dddd> Set CH3 Range value at Address aa to d.dddd</d.dddd>				
*aaSN4 <d.dddd> Set CH4 Range value at Address aa to d.dddd</d.dddd>				
Example: Send *03SN35000.0				
	Model 954 with Address 03 will have CH3 Range			
	value set to 5000.0.			
Enable I	Master Channel (CH1)			
BS232	Command:			
R11	Enable Master Channel (CH1)			
R12	Disable Master Channel (CH1)			
	Note: Master Channel must be enabled before enabling Slave Channel(s)			
Setting	Local or Remote Operation			
RS232	Command:			
RE1	Local Operation (Front Panel Enabled)			
RE2	Remote Operation (Front Panel Disabled)			

RS485 Command:

*aaRE1	Local Operation (Front Panel Enabled)
*aaRE2	Remote Operation (Front Panel Disabled)

Reading Range Value RS232 Query:

ICLOL	daory.	
SN1	Response:	SN1d.dddd

SN2	Response:	SN2d.dddd

- SN3 Response: SN3d.dddd
- SN4 Response: SN4d.dddd

Example: Send SN1

Response:	SN1150	.00
-----------	--------	-----

RS485 Query:

*aaSN1	Response: S	SN1d.dddd
*aaSN2	Response: S	SN2d.dddd

	•	
*aaSN3	Response:	SN3d.dddd

*aaSN4 Response: SN4d.dddd

Enable Slave Channels (CH2, CH3 and CH4) RS232 Command:

R21	Enable Slave A (CH2)
R22	Disable Slave A (CH2)
R31	Enable Slave B (CH3)
R32	Disable Slave B (DH3)
R41	Enable Slave C (CH4)
R42	Disable Slave C (CH4)

RS485 Command;

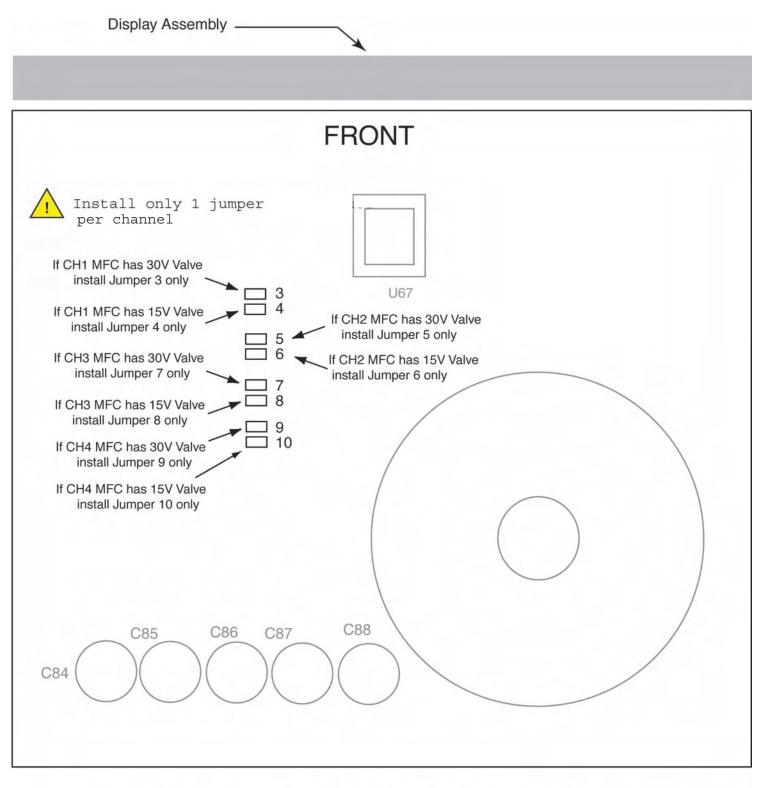
*aaR21	Enable Slave A (CH2)
*aaR22	Disable Slave A (CH2)
*aa R31	Enable Slave B (CH3)
*aaR32	Disable Slave B (CH3)
*aaR41	Enable Slave C (CH4)
*aa R42	Disable Slave C (CH4)

UNITS OF MEASURE TABLE

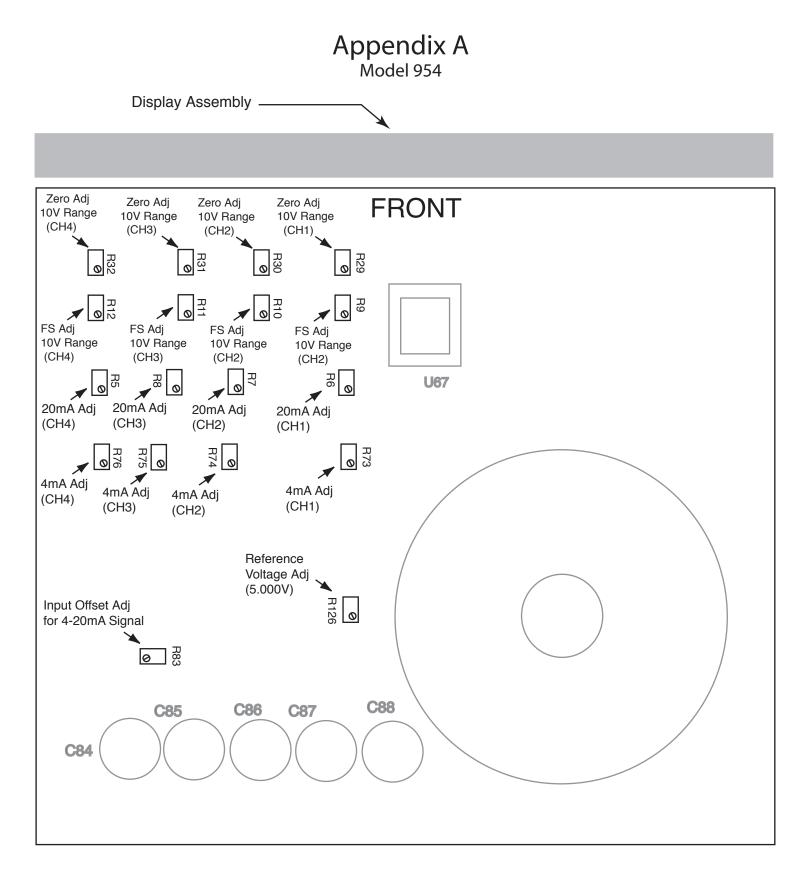
#	Description	Abbrev	Total
1 2	Standard Cubic Centimeters per Minute Standard Liters per Minute	SCCM SLM	SCC SL
3	Percent	%	NA
4 5	Volts Millivolts	V MV	NA NA
6 7	Counts	CNT	NA
7 8	Normal Liters per Minute Standard Liters per Second	NLM SLS	NL SL
9	Normal Liters per Second	NLS	NL
10 11	Standard Liters per Hour Normal Liters per Hour	SLH NLH	SL NL
12	Standard Milliliters per Minute	SMLM	SML
13 14	Normal Milliliters per Minute Standard Milliliters per Second	NMLM SMLS	NML SML
15	Normal Mililiters per Second	NMLS	NML
16 17	Standard Milliliters per Hour Normal Milliliters per Hour	SMLH NMLH	SML NML
18	Normal Cubic Centimeters per Minute	NCCM	NCC
19 20	Standard Cubic Centimeters per Second	SCCS NCCS	SCC NCC
21	Standard Cubic Centimeters per Hour	SCCH	SCC
22 23	Normal Cubic Centimeters per Hour Standard Cubic Feet per Minute	NCCH SCFM	NCC SCF
23 24	Normal Cubic Feet per Minute	NCFM	NCF
25 26	Standard Cubic Feet per Second Normal Cubic Feet per Second	SCFS NCFS	SCF NCF
27	Standard Cubic Feet per Hour	SCFH	SCF
28 29	Normal Cubic Feet per Hour Standard Cubic Meters per Minute	NCFH SCMM	NCF SCM
30	Normal Cubic Meters per Minute	NCMM	NCM
31 32	Standard Cubic Meters per Second Normal Cubic Meters per Second	SCMS NCMS	SCM NCM
33	Standard Cubic Meters per Hour	SCMH	SCM
34 35	Normal Cubic Meters per Hour Standard Cubic Meters per Hour	NCMH SCMH	NCM SCM
36	Normal Cubic Inches per Minute	NCIM	NCI
37 38	Standard Cubic Inches per Second Normal Cubic Inches per Second	SCIS NCIS	SCI NCI
39	Standard Cubic Inches per Hour	SCIH	SCI
40 41	Normal Cubic Incher per Hour Pounds per Minute	NCIH LBM	NCI LB
42 43	Pounds per Second Pounds per Hour	LBS LBH	LB LB
43 44	Kilograms per Minute	KgM	Kg
45 46	Kilograms per Second Kilograms per Hour	KgS KgH	Kg Kg
47	Grams per Minute	GRM	GR
48 49	Grams per Second Grams per Hour	GRS GRH	GR GR
50	Moles per Minute	MolM	Mol
51 52	Moles per Second Moles per Hour	MolS MolH	Mol Mol
53	Kilomoles per Minute	KMolM	KMol
54 55	Kilomoles per Second Kilomoles per Hour	KMolS KMolH	KMol KMol
56	Watts	W	NA
57 58	Bits per Second Seconds	BPS S	BP NA
59	Minutes	Μ	NA
60 61	Hours Watt*Hours	H WH	NA W
62	Torr	TORR	NA
63 64	Bar Pascals	BAR Pa	NA NA
65	Inches of Water	inH20	NA
66	Pounds per Square Inch	PSI	NA

GAS IDENTIFICATION TABLE

# 1 2 3 4	GAS Acetic Acid Acetic Acid, Anhydride Acetone Acetonitryl Acetylene	GAS ID C2H4F2 C4H603 C3H60 C2H3N C2H2	DISPLAY #1 #2 C3H60 C2H3N C2H2
5 6 7 8 9 10	Air Allene Ammonia Argon Arsine	Air C3H4 NH3 Ar AsH3	Air C3H4 NH3 Ar AsH3
11	Benzene	C6H6	C6H6
12	Boron Trichloride	BCl3	BCl3
13	Boron Triflouride	BF3	BF3
14	Bromine	Br2	Br2
15	Bromochlorodifluoromethane	CBrCIF2	#15
16	Bromodifluoromethane	CHBrF2	#16
17	Bromotrifluormethane	CBrF3	CBrF3
18	Butane	C4H10	C4H10
19	Butanol	C4H100	C4H10O
20	Butene	C4H8	C4H8
21	Carbon Dioxide	CO2	CO2
22	Carbon Disulfide	CS2	CS2
23	Carbon Monoxide	CO	CO
24	Carbon Tetrachloride	CCl4	CCl4
25	Carbonyl Sulfide	COS	COS
26	Chlorine	Cl2	Cl2
27	Chlorine Trifluoride	CIF3	CIF3
27 28 29 30 31	Chlorobenzene Chlorodifluoroethane Chloroform Chloropentafluoroethane	C6H5CI C2H3CIF2 CHCI3 C2CIF5	#28 #29 CHCl3 #31
32	Chloropropane	C3H7Cl	#32
33	Cisbutene	C4H8	C4H8
34	Cyanogen	C2N2	C2N2
35	Cyanogen Chloride	CICN	CICN
36	Cyclobutane	C4H8	C4H8
37	Cyclopropane	C3H6	C3H6
38	Deuterium	H22	H22
39	Diborane	B2H6	B2H6
40	Dibromodifluoromethane	CBr2F2	#40
41	R21	CHCl2F	R21
42	Dichloromethane	CH2Cl2	#42
43	Dichloropropane	C3H6Cl2	#43
44	Dichlorosilane	H2SiCl2	#44
45	Diethyl Amine	C4H11N	#45
46	Diethyl Ether	C4H10O	#46
47	Diethyl Sulfide	C4H10S	#47
48	Difluoroethylene	C2H2F2	#48
49	Dimethylamine	C2H7N	C2H7N
50	Dimethyl Ether	C2H6O	C2H6O
51 52 53 54 55	Dimethyl Sulfide Divinyl Ethane Ethane, 1-chloro-1,1,2,2-tetraflouro- Ethane, 1-chloro-1,2,2,2-tetrafluoro-	C2H6S C4H6 C2H6 C2HCIF4 C2HCIF4 C2HCIF4	C2H6S C4H6 C2H6 #54 #55
56	Ethanol	C2H6O	C2H6O
57	Ethylacetylene	C4H6	C4H6
58	Ethyl Amine	C2H7N	C2H7N
59	Ethylbenzene	C8H10	C8H10
60	Ethyl Bromide	C2H5Br	#60
61 62 63 64 65 66	Ethyl Chloride Ethyl Fluoride Ethylene Ethylene Dibromide Ethylene Dichloride Ethylene Oxide	C2H5CI C2H5F C2H4 C2H4Br2 C2H4CI2 C2H4CI2 C2H4O	#61 C2H5F C2H4 #64 #65 C2H4O


GAS IDENTIFICATION TABLE

#	GAS	GAS ID	DISPLAY
67	Ethyleneimine	C2H4N	C2H4N
68	Ethylidene Dichloride	C2H4Cl2	#68
69	Ethyl Mercaptan	C2H6S	C2H6S
70	Fluorine	F2	F2
71	Formaldehyde	CH2O	CH2O
72	Freon 11	CCI3F	CCI3F
73	Freon 12	CCI2F2	#73
74	Freon 13	CCIF3	CCIF3
75	Freon 14	CF4	CF4
76	Freon 22	CHCIF2	#76
77	Freon 23	CHF3	CHF3
78	Freon 114	C2CI2F4	#78
79	Furan	C4H4O	C4H4O
80	Helium	He	He
81	Heptafluoropropane	C3HF7	C3HF7
82	HMDS	C6H19NSi2	HMDS
83	Hexamethyldisiloxane	C6H18OSi2	#83
84	Hexafluorobenzene	C6H14	C6H14
85		C6E6	C6E6
86	Hexene	C6H12	C6H12
87	Hydrazine	N2H4	N2H4
88	Hydrogen	H2	H2
89	Hydrogen Bromide	HBr	HBr
90	Hydrogen Chloride	HCI	HCI CHN
91	Hydrogen Cyanide	CHN	HF
92	Hydrogen Fluoride	HF	
93	Hydrogen lodide	HI	HI
94	Hydrogen Selenide	H2Se	H2Se
95	Hvdrogen Sulfide	H2S	H2S
96	Isobutane	C4H10	C4H10
97	Isobutanol	C4H10O	#97
98	Isobutene	C4H8	C4H8
99	Isopentane	C5H12	C5H12
100	Isopropyl Alcohol	C3H8O	C3H8O
101	Isoxazole	C3H3NO	#101
102	Ketene	C2H2O	C2H2O
103	Krypton	Kr	Kr
104	Methane	CH4O	CH4O
105	Methanol	CH4O	CH4O
106	Methyl Acetate	C3H6O2	#106
107	Methyl Acetylene	C3H4	C3H4
108	Methylamine	CH5N	CH5N
109	Methyl Bromide	CH3Br	CH3Br
110	Methyl Chloride	CH3Cl	CH3Cl
111	Methylcyclohexane	C7H14	C7H14
112	Methyl Ethyl Amine	C3H9N	C3H9N
113	Methyl Ethyl Ether	C3H8O	C3H8O C3H8S
114	Methyl Ethyl Sulfide	C3H8S	CH3F
115	Methyl Eluoride	CH3F	
116	Methyl Formate	C2H4O2	#116
117	Methyl Iodide	CH3I	CH3I
118	Methyl Mercaptan	CH4S	CH4S
119	Methylpentene	C6H12	C6H12
120 121	Methyl Vinyl Ether	C3H6O	C3H6O
122	Neon	Ne	Ne
	Nitric Oxide	NO	NO
123	Nitrogen	N2	N2
124	Nitrogen Dioxide	NO2	NO2
125	Nitrogen Tetroxide	N2O4	N2O4
126	Nitrogen Trifluoride	NF3	NF3
127	Nitromethane	CH3NO2	#127
128		NOCI	NOCI
129	Nitrosyl Chloride Nitrous Oxide	N2O	N2O
130	n-Pentane	C5H12	C5H12


GAS IDENTIFICATION TABLE

#	GAS	GAS ID	DISPLAY
131	Octane	C8H18	C8H18
132	Oxygen	02	02
133 134	Oxygen Difluoride	F2O O3	F2O O3
135	Ozone Pentaborane	B5H9	B5H9
136	Pentane	C5H12	C5H12
137	Perchloryl Fluoride	CIFO3	CLFO3
138	Perfluorocyclobutane	C4F8	C4F8
139 140	R116 Perfluoropropane	C2F6 C3F8	C2F6 C3F8
141	Phenol	C6H6O	C6H6O
142	Phosgene	COCI2	COCI2
143	Phosphine	PH3	PH3
144 145	Phosphorus Trifluoride Propane	PF3 C3H8	PF3 C3H8
145	Propyl Alcohol	C3H8O	C3H8O
147	Propyl Amine	C3H9N	C3H9N
148	Propylene	C3H6	C3H6
149 150	Pyradine B32	C5H5N CH2F2	C5H5N CH2F2
151	R123	C2HCl2F3	R123
152	R123A	C2HCI2F3	R123A
153	R125	C2HF5	C2HF5
154 155	R134 R134A	C2H2F4 C2H2F4	R134 R134A
155	R143	C2H2F4 C2H3F3	R143
157	R143A	C2H3F3	R143A
158	R152A	C2H4F2	R152A
159 160	R218 R1416	C3F8 C2H3Cl2F	C3F8 B1416
161	Radon	Rn	Rn
162	Sec-butanol	C4H10O	#162
163	Silane	SiH4	SiH4
164 165	Silicone Tetrafluoride Sulfur Dioxide	SiF4 SO2	SiF4 SO2
166	Sulfur Hexafluoride	SF6	SF6
167	Sulfur Tetrafluoride	SF4	SF4
168	Sulfur Trifluoride	SF3	SF3
169 170	Sulfur Trioxide Tetrachloroethylene	SO3 C2Cl4	SO3 #170
171	Tetrafluoroethylene	C2F4	C2F4
172	Tetrahydrofuran	C4H8O	C4H8O
173	Tert-butanol	C4H10O	#173
174 175	Thiophene Toluene	C4H4S C7H8	C4H4S C7H8
176	Transbutene	C4H8	C4H8
177	Trichloroethane	C2H3Cl3	#177
178	Trichloroethylene	C2HCl4	#178
179 180	R113 Triethvlamine	C2Cl3F3 C6H15N	R113 #180
181	Trimethyl Amine	C3H9N	C3H9N
182	Tungsten Hexafluoride	WF6	WF6
183	Uranium Hexafluoride	UF6	UF6
184 185	Vinyl Bromide Vinyl Chloride	C2H3Br C2H3Cl	#184 #185
186	Vinyl Fluoride	C2H3CI C2H3F	C2H3F
187	Water Vapor	H2O	H2O
188	Xenon	Xe	Xe
189 190	Xylene, m- Xylene, 0-	C8H10 C8H10	C8H10 C8H10
190	Xylene, p-	C8H10	C8H10
	2 · · / I·		

Appendix A Model 954 Internal Circuit Assembly Board

Jumper Locations for Selecting 15V or 30V MFC Valve Configurations for CH1, CH2, CH3 and CH4

Adjustment Potentiometer Locations