The Model BG-3 with TDAC™ (Transient Dilution Airflow Control) system is a Particulate Partial Flow Sampling System (PPFSS) that provides accurate, repeatable Particulate Matter (PM) measurements for transient and steady-state engine and vehicle testing. More than three years of research, development and testing at Southwest Research Institute and Caterpillar, as part of the proven adherence to ISO 16183, have demonstrated BG-3’s ability to maintain transient cycle PM correlation to within +/- 5% of full tunnel (CVS) results. The state of the art system is designed for transient test cycles of diesel, gasoline or natural gas engines of any size to be used in both engine and chassis test cells. The Model BG-3 is exceptionally suited for steady-state test cycles as well.

During a transient test cycle, engine speed, load, airflow and fuel flow values exhibit high rates of change over very short time frames. Because of these ever changing variables, the BG-3 with TDAC™ is the only system up to the task. The magnitude of engine inlet air mass flow excursions can approach 10:1 within less than two seconds. The challenge for a PPFSS is to maintain constant proportional flow from an exhaust stream with a highly variable mass flow rate.

TDAC™ FOR TRANSIENT TESTING

Patented Transient Dilution Airflow Control (TDAC™) utilizes dilution tunnel design advances and a unique flow apportionment and control system to effectively execute proportional sampling. The flow delay at the particulate sample probe is considerably less than the 500-millisecond delay specification elaborated in ISO 16183. Unlike other systems that require mass flow controllers to compensate for system time delays, the Model BG-3 utilizes a real-time measurement of exhaust flow to ensure correlation with full-flow constant volume sampling.

In the Model BG-3, conditioned dilution air is measured and controlled by the system’s dilution air mass flow controller located inside TDAC module. A flow control valve system in a feedback loop with an ultra-fast response (<300 millisecond) provides control of the proportional flow control valve.

The dilution air mass flow controller and its ancillary instrumentation are maintained in a thermally stable environment in close proximity to the dilution tunnel. TDAC™ input is provided by a 0-5 volt linear output from the engine with an inlet
air mass flow sensor, like Sierra’s Air-Trak™ flow meter.

SOFTWARE

The BG-3 software is a user friendly application that allows the engineer to work independently of a host system or interfaced with a host. The BG-3 software allows the knowledgeable engineer the diversity of testing any size or fueled engine for particulates, calibration and troubleshooting of the system.

BG-3 Main Screen

The status screen displays the system lay-out and all of the real time parameters before and through-out the test. The operations display is a useful tool for the operator as the test is being performed and after completion.

BG-3 Setup Screen

The BG-3 set-up screen is unique in that it can be modified for any test situation. Altering the units of measure is one of the easily adjustable features of the set-up screen. The easily accessed (tab) screen allows the engineer the rapid change of any test parameter.

BG-3 Tracker Screen

The "Tracker" function is a tool that every engineer will find irreplaceable. This screen can be used by the engineer to track any of the functions (diluted mass flow, delta pressure, engine exhaust flow versus sample mass flow) or other immediate test functions for immediate reference or archival of data.

BG-3 Calibration Screen

The engineer will find the calibration of the system very manageable and efficient.

Correlation Data

Engine intake airflow laminar flow element (LFE) Delta P Voltage versus BG-3 Delta P Voltage; Figure 2.3, Scatter plot; depicts the regression of the engine intake airflow Delta P versus the BG-3 Delta P during an actual USEPA heavy-duty on-highway transient cycle. Plot shows the excellent proportionality between the two. The BG-3 probe flow was measured by an instrumented miniature LFE. This comparison was performed with the small laminar flow element attached directly to the BG-3 tunnel when disconnected from the exhaust stack and sampling test cell air.
BG-3 Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Current ISO DIS 16183 Permissible Limit</th>
<th>Sierra BG-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy of Dilution Air Flow</td>
<td>+/- 2% of reading</td>
<td>+/- 1.5% of reading</td>
</tr>
<tr>
<td>Accuracy of Diluted Exhaust Gas Flow</td>
<td>+/- 2% of reading</td>
<td>+/- 1.5% of reading</td>
</tr>
<tr>
<td>System Response time</td>
<td><= 0.5 second</td>
<td>0.3 second</td>
</tr>
<tr>
<td>Input method of Exhaust gas mass flow</td>
<td>1. Direct method</td>
<td>Any of the 4</td>
</tr>
<tr>
<td>Proportionality</td>
<td>Correlation coefficient R2 of the linear regression between Gp,i and GEXH,i shall not be less than 0.9.</td>
<td>>0.98</td>
</tr>
<tr>
<td>Filter size</td>
<td>Particulate filters must have a minimum diameter of 47mm. Larger diameter filters are acceptable.</td>
<td>47mm, 70mm</td>
</tr>
<tr>
<td>Sample filters</td>
<td>The diluted exhaust shall be sampled by a single filter placed within a filter holder during the test sequence.</td>
<td>Meets requirement</td>
</tr>
<tr>
<td>Filter face velocity</td>
<td>A gas face velocity through the filter of 35 to 100 cm/s The pressure drop increase between the beginning and the end of the test shall be no more than 25kPa.</td>
<td>Meets requirement</td>
</tr>
<tr>
<td>Filter loading</td>
<td>Minimum filter loading shall be 0.25 mg for filter size of 70mm and below.</td>
<td>Meets requirement</td>
</tr>
<tr>
<td>Accuracy of Gtotw</td>
<td>+/- 2%</td>
<td>+/- 2% or less</td>
</tr>
<tr>
<td>Accuracy of Gdilw</td>
<td>+/- 2%</td>
<td>+/- 2% or less</td>
</tr>
</tbody>
</table>

ISO 16183 Information

- **Accuracy of Dilution Air Flow**: +/- 2% of reading
- **Accuracy of Diluted Exhaust Gas Flow**: +/- 2% of reading
- **System Response time**: <= 0.5 second
- **Input method of Exhaust gas mass flow**: 1. Direct method
- **Proportionality**: Correlation coefficient R2 of the linear regression between Gp,i and GEXH,i shall not be less than 0.9. The standard error of estimate of Gp,i on GEXH,i shall not exceed 5% of Gp maximum. Gp intercept of the regression line shall not exceed +/- 2% of Gp maximum.
 - 1-2%
 - Meets requirement
- **Filter size**: Particulate filters must have a minimum diameter of 47mm. Larger diameter filters are acceptable.
 - 47mm, 70mm
- **Sample filters**: The diluted exhaust shall be sampled by a single filter placed within a filter holder during the test sequence.
 - Meets requirement
- **Filter face velocity**: A gas face velocity through the filter of 35 to 100 cm/s The pressure drop increase between the beginning and the end of the test shall be no more than 25kPa.
 - Meets requirement
- **Filter loading**: Minimum filter loading shall be 0.25 mg for filter size of 70mm and below.
 - Meets requirement
- **Accuracy of Gtotw**: +/- 2%
- **Accuracy of Gdilw**: +/- 2%

Additional specifications

All parts of the dilution system in contact with raw and diluted exhaust gas must be designed to minimize deposition or alteration of the particulates.

Headquarters:
5 Harris Court, Building L
Monterey, CA 93940
Tel: 800.866.0200 or 831.373.0200
Fax: 831.373.4402
Internet: www.sierraemissions.com

Michigan Office:
P.O. BOX 532
DeWitt, MI 48820
Tel: 517.669.0514 Mobile 517.575.7485
Fax: 517.669.5975
Email: info@sierraemissions.com